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Diatoms are a type of unicellular microalgae found in all aquatic environments. 
Their great diversity and ubiquity make these organisms recognized bio-indi-
cators for monitoring the ecological status of watercourses, particularly in the 
context of the implementation of the European Water Framework Directive. 

With this project, we address the two following topics:

INTRODUCTION

DIATOM CLASSIFICATIONDIATOM DETECTION

Atlas (2020)   
Atlas is the main  diatom dataset of 
this project. The images have been 
extracted from 3 DREAL diatom at-
lases gathering samples from the 
hydrographic basin Rhin/Meuse [1]
[2][3]. The main challenge of this pro-
cess was to extract the right images 
with their respective labels, some at-
las needing extensive segmentation 
tasks and many filters to reduce man-
ual post-processing.
The Atlas dataset is composed of 157 
taxa with a median of 21 images per 
taxon.

Aqualitas (2017) 
In 2017, [4] proposed an update on di-
atom classification reaching 99.55% 
of accuracy with the Alex-Net convolu-
tionnal neural network. They achieved 
those scores with their own dataset 
created in partnership with the Span-
ish National Research Council.
In this project we propose on update 
on their work by applying the latest 
CNN advances in image classification 
on their dataset.
The Aqualitas dataset is composed of 
100 taxa with a median of 100 images 
per taxon.

ADIAC (2002)  
The ADIAC project [5] sets the first 
state of the art reference for automat-
ic diatom classification and  made 
a robust diatom dataset available to 
the public. The original subsets used 
for their experiments not being avail-
able anymore but a following paper 
[6] published in 2011 used 3 new sub-
sets composed of 38, 48 55 taxa that 
we will name respectively ADIAC38, 
ADIAC48 and ADIAC55.

DIATOM DATASETS 

Goal        
Thousands of diatom taxa have been discovered to this day and identifying them is of 
great interest for biologists as they reveal a lot on their environment. Manual diatom 
classification is a difficult and time-consuming task and a lot of studies worked on au-
tomating the process. In this study, we propose an update on the subject using a state 
of the art CNN image classifier (Xception) allowing to extract high level image features.

Process      

Results      

Atlas Aqualitas ADIAC55 ADIAC48 ADIAC38
#taxa 166 80 55 48 38

Median #images/taxon 51 94 20 20 21
Accuracy 0.9265 0.9362 0.9672 0.9735 0.9713

Previous best accuracy  Ø 0.9951 0.9617 0.9715 0.9797

For the 3 ADIAC subsets, we got approximatly the same results as in the original study, 
meaning that a high-level feature exctractor like Xception is able to perform as well as 
case-specific handcrafted features. For the Aqualitas dataset, our evaluation technique 
of splitting before balancing makes our score lower but less biased in our opinion. Fi-
nally, the score we got on the Atlas dataset with a significantly higher number of taxa 
shows that Xception is able to distinguish many taxa with a good confidence. 

DIATOM CLASSIFICATION
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Goal        
By detection, we understand the localization of diatoms on a microscope image. 
Hence, the first objective of this project is to apply a state-of-the-art object detection 
architechture to detect diatoms in light microscopy images. An example of such im-
age with framed diatoms is visible on the right.
This approach is new for two reasons: 
• it uses a deep learning object detection architecture for microorganism detection
• the training is made using a dataset of synthetic multi-taxa microscope images

Process               

Results               

A B C D
Type synthetic real real real
Images 3000 185 185 185
APIoU=0.50:0.95 0.876 0.247 0.612 0.515
APIoU>0.50 0.990 0.580 0.857 0.768
APIoU>0.75 0.965 0.117 0.737 0.623
ARmax=1 0.097 0.215 0.333 0.297
ARmax=10 0.871 0.397 0.724 0.652
ARmax=100 0.905 0.426 0.728 0.667

DIATOM DETECTION

1
Datasets

2
Training and
evaluation

SPECIFIC
MODEL

GENERIC
MODEL

Faster R-CNN
pretrained on COCO dataset

Improved pipeline
synthetic images + real  images

SPECIFIC
MODEL

Faster R-CNN
pretrained on COCO dataset

Simple pipeline 
real images only

“synthetic” training “real” trainingevaluation A

evaluation B evaluation C

evaluation D

SPLIT60% 40%

tra
in

in
g 

se
t

ev
al

ua
tio

n 
se

t

REAL
Real images are used to fine-tune 

the model for a specific type of 
microscope images.
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SYNTHETIC
The synthetic dataset allows to drastically reduce 

the number of real hand-labelized image.

For evaluation, we used COCO’s set of metrics as they are 
widely spread and cover a wide range of criteria. 
Seeing results of evaluation B, It is clear for now that the 
generic model can not be applied out of the box to any type 
of microscope image and that the fine-tuning process on 
real images is essential. However, thanks to the synthetic 
dataset, we have a significant gain with with C in compar-
ison to D! It means that the synthetic dataset allows to 
better generalize and spare tedious manual labelization.
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